29,338 research outputs found

    Semiflexible Chains under Tension

    Full text link
    A functional integral formalism is used to derive the extension of a stiff chain subject to an external force. The force versus extension curves are calculated using a meanfield approach in which the hard constraint u2(s)=1u^2(s)=1 is replaced by a global constraint =1 = 1 where u(s) u(s) is the tangent vector describing the chain and ss is the arc length. The theory ``quantitatively'' reproduces the experimental results for DNA that is subject to a constant force. We also treat the problems of a semiflexible chain in a nematic field. In the limit of weak nematic field strength our treatment reproduces the exact results for chain expansion parallel to the director. When the strength of nematic field is large, a situation in which there are two equivalent minima in the free energy, the intrinsically meanfield approach yields incorrect results for the dependence of the persistence length on the nematic field.Comment: 14 pages, 1 figure available upon request, submitted to J. Chem. Phy

    L2L_2 boosting in kernel regression

    Full text link
    In this paper, we investigate the theoretical and empirical properties of L2L_2 boosting with kernel regression estimates as weak learners. We show that each step of L2L_2 boosting reduces the bias of the estimate by two orders of magnitude, while it does not deteriorate the order of the variance. We illustrate the theoretical findings by some simulated examples. Also, we demonstrate that L2L_2 boosting is superior to the use of higher-order kernels, which is a well-known method of reducing the bias of the kernel estimate.Comment: Published in at http://dx.doi.org/10.3150/08-BEJ160 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Potential of mean force and the charge reversal of rodlike polyions

    Full text link
    A simple model is presented to calculate the potential of mean force between a polyion and a multivalent counterion inside a polyelectrolite solution. We find that under certain conditions the electrostatic interactions can lead to a strong attraction between the polyions and the multivalent counterions, favoring formation of overcharged polyion-counterion complexes. It is found that small concentrations of salt enhance the overcharging, while an excessive amount of salt hinders the charge reversal. The kinetic limitations to overcharging are also examined.Comment: To be published in the special issue of Molecular Physics in honor of Prof. Ben Wido

    Electron Addition Spectrum in the Supersymmetric t-J Model with Inverse-Square Interaction

    Full text link
    The electron addition spectrum A^+(k,omega) is obtained analytically for the one-dimensional (1D) supersymmetric t-J model with 1/r^2 interaction. The result is obtained first for a small-sized system and its validity is checked against the numerical calculation. Then the general expression is found which is valid for arbitrary size of the system. The thermodynamic limit of A^+(k,omega) has a simple analytic form with contributions from one spinon, one holon and one antiholon all of which obey fractional statistics. The upper edge of A^+(k,omega) in the (k,omega) plane includes a delta-function peak which reduces to that of the single-electron band in the low-density limit.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Casimir Dispersion Forces and Orientational Pairwise Additivity

    Full text link
    A path integral formulation is used to study the fluctuation-induced interactions between manifolds of arbitrary shape at large separations. It is shown that the form of the interactions crucially depends on the choice of the boundary condition. In particular, whether or not the Casimir interaction is pairwise additive is shown to depend on whether the ``metallic'' boundary condition corresponds to a ``grounded'' or an ``isolated'' manifold.Comment: 6 pages, RevTe

    Estimates of isospin breaking contributions to baryon masses

    Full text link
    We estimate the isospin breaking contributions to the baryon masses which we analyzed recently using a loop expansion in the heavy baryon approximation to chiral effective field theory. To one loop, the isospin breaking corrections come from the effects of the d,ud, u quark mass difference, the Coulomb and magnetic moment interactions, and effective point interactions attributable to color-magnetic effects. The addition of the first meson loop corrections introduces new structure. We estimate the resulting low-energy, long-range contributions to the mass splittings by regularizing the loop integrals using connections to dynamical models for finite-size baryons. We find that the resulting contributions to the isospin breaking corrections are of the right general size, have the correct sign pattern, and agree with the experimental values within the margin of error.Comment: 15 pages, 5 figures; changed title and conten

    1/t pressure and fermion behaviour of water in two dimensions

    Full text link
    A variety of metal vacuum systems display the celebrated 1/t pressure, namely power-law dependence on time t, with the exponent close to unity, the origin of which has been a long-standing controversy. Here we propose a chemisorption model for water adsorbates, based on the argument for fermion behaviour of water vapour adsorbed on a stainless-steel surface, and obtain analytically the power-law behaviour of pressure, with an exponent of unity. Further, the model predicts that the pressure should depend on the temperature T according to T^(3/2), which is indeed confirmed by our experiment. Our results should help elucidate the unique characteristics of the adsorbed water.Comment: 11 pages, 4 figure

    Collective Dynamics of Random Polyampholytes

    Full text link
    We consider the Langevin dynamics of a semi-dilute system of chains which are random polyampholytes of average monomer charge qq and with a fluctuations in this charge of the size Qāˆ’1Q^{-1} and with freely floating counter-ions in the surrounding. We cast the dynamics into the functional integral formalism and average over the quenched charge distribution in order to compute the dynamic structure factor and the effective collective potential matrix. The results are given for small charge fluctuations. In the limit of finite qq we then find that the scattering approaches the limit of polyelectrolyte solutions.Comment: 13 pages including 6 figures, submitted J. Chem. Phy
    • ā€¦
    corecore